
On the correction-to-scaling exponent of linear polymers in two dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 L543

(http://iopscience.iop.org/0305-4470/19/9/015)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) L543-L545. Printed in Great Britain 

LElTER TO THE EDITOR 

On the correction-to-scaling exponent of linear polymers in 
two dimensions 
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Physics Department, St Francis Xavier University, Antigonish, Nova Scotia B2G lC0, 
Canada 

Received 17 March 1986 

Abstract. We present new results which indicate that the leading correction-to-scaling 
exponent in the mean squared end-to-end distance in two dimensions is the analytic term. 
We point out a potential source of the various correction-to-scaling terms reported in the 
literature. 

Considerable attention has been given to the two-dimensional self-avoiding walk (SAW). 
It is of particular interest as a model for generating polymer conformations in a good 
solvent (de Gennes 1979). The scaling exponent, v, for the asymptotic dependence of 
the mean squared end-to-end distance, R L ,  upon the length N 

R" =  AN^' (1) 

is more or less agreed to be v = 0.750 in two dimensions (exact enumeration: Domb 
1963, Grassberger 1982, Djordjevic er a1 1983, Majid et a1 1983, Adler 1983, Guttman 
1984, Privman 1984; Monte Carlo studies: Meirovitch 1983, Havlin and Ben-Avraham 
1983, Rapaport 1985, MacDonald et a1 1985, Lyklema and Kremer 1985; real space 
renormalisation: Demda 1981, Redner and Reynolds 1981). Nienhuis (1982, 1984) 
has shown by reasonable but non-rigorous arguments that the SAW, through its identity 
with the n + O  limit of the n-vector model, may be mapped onto the Coulomb gas 
model, a model onto which many other models (some with exactly known exponents) 
may be mapped. This common meeting ground is exploited to determine the critical 
exponents of the SAW. Nienhuis also concluded that the exponent y defined by 

CN-p"./-' (2) 

is 3 (CN is the number of distinct walks of N steps and p the connectivity constant). 
These exponents are widely believed to be exact and the only numerical evidence 
which may be inconsistent is the &-expansion renormalisation group result v = 0.76 of 
LeGuillou and Zinn-Justin (1985) for the d = 2, n + 0 n-vector model. This discrepancy 
is perhaps due to the rather large value of the perturbation parameter ( E  = 2). 

There is a total lack of consensus regarding the leading correction-to-scaling 
exponent, A,: 

RL - AN2'[ 1 + BN-Al + C N - 4 + .  . .]. (3) 

Whilst Nienhuis' mapping gives A, =$in qualitative agreement with the RG &-expansion 
result A, = 1.29 (LeGuillou and Zinn-Justin 1985) the exact enumeration studies (refer- 
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ences given above) suggest a range of values from - 0.66 to - 0.95 although Guttmann 
argues that there is no evidence for a value less than 1. TKe Monte Carlo studies have 
also been inconclusive. Lyklema and Kremer (1985) find A I  = 0.84, Havlin and Ben- 
Avraham (1983) report 1.2 whilst Rapaport (1985) finds A, = 1, i.e. the analytic term 
is more important than the strongest non-analytic correction. The presence of a 
non-analytic term less than one would cast doubt on the validity of Nienhuis’ mapping. 

In this letter we report the results of a Monte Carlo investigation of SAW on the 
quadratic lattice. We use the ‘wiggle’ method (MacDonald et al 1985, Stellman and 
Gans 1972a, b, Moti La1 1969) to generate the end-to-end distance for chains ranging 
from 10-500 links. Our subsequent analysis depends on the accurate determination 
of the leading amplitude, A. We assume that corrections to scaling are negligible (or 
at least small enough not to have any significant statistical effect on the data) for chains 
of length N in the range 140-500. A least squares fit of our data gives an exponent 
2v of 1.5005 and amplitude A of 0.774 which is in agreement with the extrapolated 
plot of R2,/N3’2 against 1 / N  (see also figure 1). We note that the amplitude is 
extremely sensitive to fluctuations in the data whilst the leading exponent is relatively 
stable. We now look at the quantity 

C( N )  RL - AN2’ - A B N 2 ” - A ~ ( N )  (4) 

for values of N s 22. We draw upon the exact enumeration data for RL from Domb 
(1963) and Grassberger (1983). Examination of In C( N) against In N for even (and 
odd) successive values of N indicate that A,(  N) is a monotonically increasing function 
of alternate integers of N and our extrapolated projection of A I (  N) against 1 / N  leads 
to A, = 1.0 for A = 0.774. If we use, for example the criterion that chains of length 
N 3 16 are influenced only by the leading correction-to-scaling term, then we find 
A,(N) independent of N and equal to 0.64 (cf the results of Privman (1984) and 
Djordjevic et a1 (1983)) and A equal to 0.762. However for A equal to 0.782 we find 
that the above extrapolation leads to AI equal to 1.50. A change in A of the order of 
about 2.6% leads to a change in A, of 100°/~. 

- 
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Figure 1. Plot of R2,/N3’2 - A(1+ BN-”l+ . . .) against 1/N. This should have intercept 
A if 2 u  =$ and A, = 1.  Inset: dependence of estimates of leading correction exponent A, 
on choice of amplitude A. 



Letter to the Editor L545 

We continue our analysis; assuming that the dominant correction-to-scaling term 
is the analytic correction we treat its amplitude B as an adjustable parameter to ensure 
a leading exponent of 2v = 1.50 for N in the range 50-125. This occurs at B equal to 
0.79 and A equal to 0.775, in very good agreement with our previous analysis and the 
earlier work of Rapaport (1985). 

Our main conclusions are: (i)  the leading correction-to-scaling term is analytic, i.e. 
A, = 1.OiO.1; (ii) the values obtained for A, are crucially dependent on the value of 
the leading amplitude (figure 1) and this therefore may be responsible for the widely 
varying estimates for A, reported in the literature; (iii) the Nienhuis value of the leading 
non-analytic correction exponent A, = 3 is not incompatible with this result, and it is 
plausible that RG analysis which is primarily concerned with the non-analytic part of 
the free energy is unable to detect the presence of analytic correction terms. 

We would like to thank Stu Whittington and Alan Sokal for informing us of previous 
work on the ‘wiggle’ method; Kurt Kremer and Dick Lyklema for their unpublished 
data; B V Liengme, Marty Corsten and Vince Connors for help in developing various 
algorithms, and Francois Leyvraz for advice on analysing the Monte Carlo data. This 
research is supported in part by grants from NSERC of Canada and UCR of St Francis 
Xavier University. 
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